“Carbon-based aerogels for adsorption of toxic gases and air decontamination”

Patrina Paraskevopoulou, Despoina Chriti, Grigorios Raptopoulos, Maria Papastergiou
Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece

Barbara Milow
Institute of Materials Research, German Aerospace Center, 51170 Cologne, Germany

Benjamin Brandenburg
Dräger Safety AG & Co. KGaA, Revalstraße 1, 23560 Lübeck, Germany

Personal respiratory protection equipment (e.g., gas masks) use activated carbons and suitable catalysts. In the last decade, research for more efficient technologies has focused on other high surface materials such as MOFs and zeolites. In this work we describe novel highly porous, high surface area carbon aerogels from pyrolysis and etching of organic (co)polymers (synthetic polymers, bio-polymers, polymeric waste, etc.), and their use as adsorbents for toxic gases and therefore for air decontamination. The materials have been prepared in the form of powders, granules, spheres, pellets or monoliths. Different methods of pyrolysis and etching (e.g., various temperatures, various amounts of CO₂ - from stoichiometric amounts to large excess) have been tested, and their effect on the properties of the resulting carbons (BET, SEM and adsorption capacity) is being discussed.

This abstract belongs to the Section “Nanohybrids”.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 685648. This publication reflects the views only of the authors, and the Commission cannot be held responsible for any use, which may be made of the information contained therein.